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Iterative Calculation of Relaxation Spectrum from 
Free Vibration Data 

I. L. HOPKINS, Bell Telephone Laboratories, Inc., Murray Hill, 
New Jersey 

PART 1. COMPLEX MODULUS G*(w,u) 

It is customary to express the dynamic shear modulus of viscoelastic 
substances in terms of G' (w)  and G"(w),  where G'(w) corresponds to the 
stiffness of the spring of a Voigt model and G " ( w )  to the viscous resistance 
of the dashpot. Then the total modulus is G * ( w )  = G ' ( w )  + iG"(w).  
Analogous expressions are used for other moduli, but the argument is 
general. For steady-state sinusoidal motion, G ' ( w )  and G " ( w )  are, in 
terms of the relaxation spectrum G ( T ) ,  as follows:' 

G ' ( w )  = S," ~ ~ r ~ G ( ~ ) d r / ( l  + w2?) 

G"(w)  = S," w r G ( r ) d ~ / ( l  + w2r2)  

(1) 

(2) 

and 

If the motion is damped sinusoidal as, for example, in the free oscilla- 
tion of a torsional pendulum, the motion is characterized not only by the 
frequency w but also by the damping factor a with the displacement, 8, 
given by : 

e(t) = eo (exp { -at 1 ) sin wt, (3) 

if nonperiodic transients are ignored. 
The behavior of the viscoelastic material may here also be represented 

by a Voigt element12s3 and it is commonly known that the functions G' 
and G' so derived are not the same as those for undamped oscillation at  the 
same frequency14 the error increasing with a / w .  The Voigt equivalents G' 
and G" are therefore functions not only of the frequency w ,  but also of the 
damping factor a, and in the discussion to follow the storage and loss moduli 
will be designated G ' ( w )  and G ' ( w )  for undamped oscillation and G'(w,a) 
and G'(w,a) when damping is present. While no real difficulty arises 
when a / w  is sm11,* this restriction is not always observed, and the mag- 
nitude of the error has not, as far as the author is aware, been given. 
Values of logarithmic decrement in excess of 4 have been published16 
corresponding to a / w  = log dec/2 ?r > 2/3. 

In the sections to follow, the single Voigt element, the single Maxwell 
971 



972 I. L. HOPKINS 

element, and the general relaxation spectrum will be discussed, after 
which there will be an analytical treatment of the "box" spectrum6 and a 
numerical treatment of the National Bureau of Standards polyisobutyl- 
ene.1." 

1. Single Voigt Element 
The derivation of the equations for the single Voigt element (Fig. 1) 

has been presented previous1y,2~s but for completeness and uniformity 
will be given here. The differential equation for free oscillation is 

Ileu + kqe' + kG'B = o 

Fig. 1. Voigt element: G' = apring modulue; q = dashpot viscosity; 1 = reduced in- 
ertia; e = dieplacement. 

where Il is the moment of inertia of the pendulum bob, 7 the viscosity, G' 
the storage modulus, and 8' and 8' the first and second time derivatives, 
respectively, of 0. Hereafter, I l / k  = I will be used, the equation above 
becoming 

18' + q6' + G'B = 0 (4) 

I is then the reduced moment of inertia, and the form factor k no longer 
appears explicitly. 

If the boundary conditions are 

e(o) = o,e'(o) = v 
the complete solution for eq. (4) is 

e(t)  = (V/u)(exp { -.t)) sin ot 

where 

and 

Then G' = I(w2+a2) 

o = [(G'/I)  - a2]"* 

a = 7 / 2 1  = G'r/2I 
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and 

Also : 

G’ = wv = 21m 

G‘ + G” = I(w + a)2 

G‘ - G’ = I(w - .u)Z 

and Q(w,u) = G’/G” = ( ~ ~ + a ~ ) / 2 a o  3 1 for an a > 0, w > U. 
It will be shown later that it is sometimes desirable to couple a spring 

to aid the viscoelastic specimen; an example may be a torsion pendulum 
suspended from a hardened steel wire, the material under test coupled 
beneath the pendulum. Since the restoring torque in the spring is in 
phase with the displacement, it is simply additive to G’(o,a). *If the in- 
phase stiffness of the wire is g’, then G’ (w,a) of eqs. (5) to (9) should be re- 
placed by G’(w,a) + g’. Generally, the loss in a suitably chosen spring 
material is so low that it is negligible compared with that of the visco- 
elastic substance but, if desired, both g’ and g‘ can be determined in the 
absence of the viscoelastic material by the use of eqs. (8) and (9), substi- 
tuting g’ and g” for G’ and G’. Then g” is additive to G” in the same way 
that g’ is to G’. 

2. Single Maxwell Element 

While the differential equation for the free oscillation of the single Max- 
well element (Fig. 2) may be set up and solved by the same general pro- 
cedure as in the case of the Voigt element, it will be useful to introduce here 

Fig. 2. Maxwell element: Go = spring modulus; Br = dsehpot ViScOeity; I = reduced 
inertia; e = displacement. 

the Boltzmann superposition  equation^.^ If T(t) is the torque TI reduced 
by the factor k, if G(t) is the relaxation modulus, and if G’(t) = dG(t)/dt, 
then 

T(t) = 6(t)G(O) + s,’ G’(t)@(t - 7 ) d ~  
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Taking the Laplace transform: 

LTQ) = G(O)LB(t) + LG’(t)l&(t) (10) 

Rut LG’(t) = sLG(1) - G(0); substituting this into eq. (10) we have 

LT(1) = sLG(t)Le(t) 

If 8(0) = 0, then sLB(t) = 8’(1) and Eq. (11) becomes 

LT(t) = LG(I)LB’(t) 

For the reduced moment of inertia, I ,  

Ie” = - ~ ( t )  (13) 

(141 

(15) 

The transform of this is 
LT(t) = -I[s2LB(t) - 8’(0)] 

I[s2LB(t) - 8‘(0)] + sLG(t)L8(2) = 0 

w(t) = Go/($ + 1/71 

Then, from eqs. (11) and (14) : 

For a single Maxwell element, G(t) = Go exp { -t/7) and 

Then, combining eqs. (15) and (16) : 

U(t) = 8’(O>(s + 1/r)/s(s2 + S / T  + G(O)/I) 

whose solution is 

8(t )  = [ 8 ’ ( 0 ) ~ ~ / ( ~ ~ 7 ~ + ~ / 4 ) ]  { 1 / ~  - [(1/7) cos cot + (1/~)(1/47~ - a2) 

sin wt] exp { -a t ) )  ] (17) 

where w = (G/I - 1 / 4 ~ ~ ) ” *  and a = 1/27. The first term in the bracket 
is constant and may be ignored. Then, according to eqs. (8)  and (9) : 

(18) G’(w,a) = I(& + a2) = G(0) 

(G“w,a) = 21wa = (I/T)(G/I - 1 / 4 ~ ~ ) ” *  
and 

Since I = G(O)/(d + u2) fromeq. (18), and a = 1/27, 

G“(u,u) = G ( O ) W T / ( ’ / ~  + 0272) (19) 

(20) 

(21) 
(22) 
(23) 

and 
tan &a) = G”(w,a)/G’(w,a) = W T / ( ~ / ~  + ~ ~ 7 ~ )  

G’(w) = G ( 0 ) ~ ~ 7 ~ / ( 1  + w 2 9 ) ,  

G”(o) = G(O)UT/(~ + w 2 ~ ’ ) ,  and 
tan6(w) = G”(w)/G’(w) = ~ / W T  

From eqs. (I) and (2), for a single element, 

The functions of eqs. (18), (19), (21), and (22) are shown in Figure 3. 
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Fig. 3. Single maxwell element: A = G'(w) ;  B = G', (w,a) ,  a uncontrolled; C = 
G'(w); D, G'(w,a), a uncontrolled. 

Torsional pendulum experiments usually cover only a small frequency 
range, typically around 1 cycle/sec. (w = Zs), and the variation in proper- 
ties is achieved by means of temperature variations; or, with some degree 
of idealization, frequency is held constant at, say, w = 10, and the relaxa- 
tion spectrum is shifted, by temperature changes, through the factors 
UT or K ( T ) . ~ O # ~ ~  Thus for the single Maxwell element, it may be assumed 
that G(0) = 1, w = 10, and 7,  the relaxation time, is varied between 
and lo4 in steps of A log T = 0.5. In any case, including the most general 
(to be discussed later), varying 7 is equivalent to varying w and a with con- 
stant T ,  as all appear in the equations only as the products 07 and a7 and 
tbeir powers. For this reason the ordinate of Figure 3 and those of.all 
such plots to follow are in terms of log aT, where UT is the multiplying 
factor applicable either to the T'S of the relaxation spectrum or to w and a. 

3. The General Relaxation Spectrum 
Equation (12) may be solved by obtaining the inverse transform, 

T(t)  = fl O'(A)G(t - A)&z 

G(t - A) = A" G(7) exp { ( t  - A ) / T ) &  

e'(x) = (exp { -UA))(U cos WA - a sin WA) 

(24) 

(25) 

(26) 

where G(1-  A) , the relaxation modulus, is 

Let us assume that e(A) = (exp { -ax )) sin wA; then 

Substituting eqs. (25) and (26) into eq. (24), we have 

~ ( t )  = &=fl (exp { -uAj)(exp { - (t - r ) / T ] ) ( w  cos w~ 

- asin w A ) G ( T ) ~ T ~ A  (27) 
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This may be integrated with respect to A; the result, after dropping a non- 
periodic transient, is 

[ ~ ' ( w '  + a') - UT]G(T)~T l (1 - UT)' + (UT)' 
~ ( t )  = (exp { --at 1 ) sin wt 

(28) 
W&(T)dT l (1 - UT)' + (WT)' + (exp { - -a t ) )  coswt 

In terms of the single Voigt element of Figure 1, 

T(1) = G'e(t) + (G"/w)e'(t) = (exp { -a t ] )  sin ot(G' - -aG"/w) 

+ (exp { -d)) cos wt(G') (29) 

Then equating coefficients of (exp { - a t ) )  sin wt and (exp { --at ) )  cos wt 
in eqs. (28) and (29), we have 

and 

By substituting eq. (31) into eq. (30), we eliminate G" from the latter, and 

Comparison of eqs. (32) and (1) show that the integrand of the former 
is always the greater, for given finite values of o and T ;  therefore, at.a 
given frequency, G'(w,-a) > G'(w). Numerical results indicate that G'- 
&,a) > G'(w), although tbis is more difficult to prove. From eqs. (8) 
and (9): 

G'(w,u) = 2Zm 

G'(o,u) = I ( w z  + d) 
whence 

and 

Equations (31) and (32) give the dynamic properties when the visco- 
elastic material is subjected to the arbitrary displacement (exp { -d)) 
sin w t ;  eqs. (33) and (34) give further conditions that must be met if the 
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forcedisplacement relation is to be that provided by the inertial reaction 
of a mass or of a moment of inertia alone. Finding appropriate values 
of a to  reconcile eqs. (33) and (34) for a given spectrum and frequency is 
essentially a cut-and-try process, although fortunately it is one that can 
be arranged for rapid convergence in a successive approximation program 
for a computing machine. First, G’(w) and G’(w) are computed by means 
of eqs. (1) and (2)) with the use of either analytic or discrete spectral ap- 
proximations. Then, assuming that a << w, in eqs. (8) and (9) 

G’ = Iw2  

G” = 2Iaw 

whence a = 5G’/G’ if, as before, (I) = 10. With this tentative value of a, 
I is calculated by means of eq. (33)) and a function W, equal to the right 
side of eq. (34) with the factor 1/2a omitted, is also calculated. Then a 
second approximation to a is obtained by a = W/21. It is perhaps not 
obvious that this should be a better approximation than the first, but ex- 
perience shows that it is. New values of I and W are calculated, from 
which a third approximation to a is found, and so on, until, if a, is the j th 
approximation (U,-U,-~)/U, is less than any desired value; the limit O.OOO1 
was used in the calculations described here. A maximum limit of twenty 
iterations was specified, and was reached occasionally, but the average 
number waa four or five. When the value of a waa thus found, G’(o,a) = 
I ( w 2  + a2) and G“(w,a) = 2Iaw, from eqs. (8) and (9). 

The ratios a / w  thus found for the single Maxwell element, over the range 
of frequencies considered, range from 5000 to 5 X If we atmume, as 
a practical limit, a damping in which each peak has half the amplitude of its 
immediate predecessor, then -2na/w = In (0.5), from which a / w  = 0.110. 
IAt us assume, then, that the maximum ratio a / w  is to be 0.1. Thus, since 
0 = 10, alllax = 1.  We may calculate the necessary values of I and g’ as 
follows. E’irst, G’(u,a) and G“(w,a) are calculated by means of eqs. (31) 
and (32). From eq. (9) : 

I = GX/2aw = G”/20 (35) 

From eq. (8), substituting (G’(w,a) + g’) for G’: 

G’(w,a) + g’ = I (w2 + a2) = lOl(I) 

whence 

9’ = lOl(1) - G ’ ( ~ , u )  

In cases in which the iterative calculations would have resulted in a / w  
less than 0.1, g’ will be negative; g’ is of course not needed in these cases, 
but the fact serves as a check of the calculations. The results for the single 
Maxwell element are shown in Figure 4. Here it will be seen that the 
ratio g’/G‘(w,a) becomes very large at  low values of aT. In an experi- 
mental measurement, G’(w,a) would be determined by means of eq. (36), 
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LOG d~ 

Pig. 4. Single maxwell element: A = a / w ,  a uncontrolled; B = a / w  < 0.1 ; C = I ,  (1 

uncontrolled; D = I ,  a/w < 0.1; E = g’, a / w  = 0.1; F = G”(w,a), a /o < 0.1; G = 
G’(w,a), a/w < 0.1. 

all the other elements being known. G’(w,a) is then the small difference 
bqtween two large experimentally determined quantities, and precisioii 
cannot be expected. But the calculation of G“(w,a) via eq. (35) does not 
suffer this handicap-a fortunate circumstance, since G“(w,a) is the more 
useful for calculating the relaxation spectrum, as will be discussed later. 

4. “Box” Distribution of Relaxation Times 
The “box” distributionB is of the form 

G(r) = K / r  71 < 7 < 7 2  (37) 
= o  7 < 71, 7 > 7 2  

If K = l/ln (r2/71), then G(t)  is normalized to unity at t = 0. 

~ “ ( w , a )  = K(arctan { [T2(w2 + ~ 2 )  - a ] / w )  - arctan { [r1(w2 + 
Substituting eq. (35) into eqs. (31) and (32), and integrating, we find 

u 9  - a ] / @ } >  (38) 

(39) 
C’(O,U) = ( K / 2 )  In { [7z2(w2 + a’) - 2 ~ 7 2  + 1 ] / [ 7 1 * ( ~ ~  + a2) - 

2 ~ 7 1  + 111 + (a/w)G“(w,a) 

Figures 5 and 6 show the results of the calculations of these functions. 
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-8 -7 -6  -5 -4 -3 -2 - 1  0 1 
LOG aT 

Fig. 5.   ox'^ distribution: A = a, uncontrollcni; B = a / o  Q 0.1; C = I ,  u uncvu- 
trolled; I) = I ,  a/o < 0.1; E = g’, u/o  = 0.1. 

5. Polyisobutylene 
The integrals of eqs. (31)-(34) may be replaced by summations of dis- 

crete spectral lines. The line spectrum for polyisobutylene as given by 
Tobolsky and Catsiff* was recalculated to have but two lines per decade, 
instead of the five lines of the original data. Here, Young’s modulus, 
E’(w), E”(o), etc., are used instead of the shear modulus. The salient 
characteristics of this system are given in Figures 7, 8,  and 9. In plots to 
this scale, the functions C ’ ( w )  and G’(w,a) cannot be distinguished from each 
other when a / w  Q O/  1 , and the same is true for G”(o,a) and G “ ( w ) .  Figure 
7 shows the rather close similarity between G ” ( w )  and G”(w,u) with a 
unrestricted. In Figure 8, the effect of unrestricted a on the values of 
G’(w,a) a t  low values of aT is shown to be marked by the leveling off at 
G’(o,a) = 2.121 X lo5. The values of a dip below o/10 = 1.0 at the rub- 

0 

. - I  
b 
G. -2 
u) 
0 
A 

-3 

-4  I I I I I I 1 I I J 
-8 -7 -6 -5 -4 -3 -2 - I  0 I 

LOG aT 

Fig. 6. “Box” distrihutinn: F = G‘(w/a),  a uncontrolled; LG = G”(o) = G‘(w,u), 
u / w  < 0.1; H = G’(w,u) u uncontrolled; J = G’(o) = G’(w,u), a/o < 0.1. 
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0.1. 
Fig. 7. Polyisobutylene: A = G" (w,a), a uncontrolled; B = G'(w)  = G"(w,a), a/w < 

LOG 

Fig. 8. Polyisobutylene: A = G'(w,a), a uncontrolled; B = G'(w) = G'(w,a), a/w < 
0.1; C = a, uncontrolled; D = I ,  a uncbntrolled. 

bery and the glass plateaus; the corresponding values of I, G', and G" 
are used in the computations for Figure 9, where a Q w/lO. At these points, 
g' would have to be negative if a/w were 6 be held at 0.1; instead, g' is 
permitted to go to zero, and a/w is somewhat less than 0.1. 

PART 2. CALCULATION OF SPECTRA 
Ninomiya and Ferry12 have discussed approximate methods of calculat- 

ing relaxation spectra from G ' ( w )  and G"(o) (see their Equation 12). 
The success of an iterative scheme for successive approximations to the 
spectrum in the caae of stress relaxationlg suggested tha t  iteration might 
also be useful here. G'(w) is theoretically more effective than G'(w);12 a 
preliminary trial showed this to be definitely the case at the first calcula- 
tion and more strongly so at each iteration. As a result, the rest of the 
work was confined to G"(u) and G'(W,U). 
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Fig. 9. Polykobutylene: A = G'(w) 2. G'(w,a), a/u < 0.1; B = g', a / w  = 0.1; C = 
a/u < 0.1; D = I ,  a /u < 0.1. 

The successive approximations to the spectrum are calculated as follows. 
Equation (12) of Ninomiya and Ferry'z is arranged for A log o = 0.5; 
this involves their parameter a (not to be confused with the a of this paper) 
and also requires that their F", be multiplied by / A  In r1 = \ A  In 01 
= 2.303 X 0.5 = 1.1515 to change from their continuous spectrum to 
our discrete one. The results of this calculation, Hl(r), are substituted in 
eqs. (31) and (32) (arranged as sums rather than intepls), to yield the 
first approximation, GI '(w,a). Then the difference AG1 '(@,a) = G"- 
(o,a) - Gl"(w,a) is found, and from this the first correction to the spec- 
trum, LWl(r), is calculated. This is added to H1(r) to yield H2(r), from 
which G2'(o,a) is calculated, and so on for as many iterations as desired 
(in this case twenty). This was programmed for the IBM 7090 computer; 
a typical calculation with twenty iterations required 20 sec. Success in 
reproducing the spectra is discussed below. 

1. Single Maxwell Element 

Spectrum from G'(u) 

Through the twenty iterations there is a gradual but positive approach 
to the spectral line of unit strength at ~ = 1 .  This is summarized in 
Table I, where the strengths of the central line and the two adjacent ones 
are given. 

In the case of experimental data, in which the form of the spectrum is not 
known in advance, the only test is of how closely the calculated spectrum 
will reproduce the original data. For the single Maxwell unit at hand, 
the maximum values of G'(w) and G " ( w )  are 1.0 and 0.5, respectively. The 
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TABLE I 
H i  at and Adjacent to Central Line aa a Function of the Trial Number; Single Unit 

Maxwell Element, 7 = 1 

7 

Trial 0.1 0.3162 

1 
2 
3 
5 
10 
15 
20 

0.005765 
- 0.02240 
-0.03498 
- 0.03378 
-0.01204 
-0.004098 
- 0.001263 

0.1670 
0.1572 
0.1250 
0.07305 
0.01924 
0.005383 
0.001578 

1 .o 
0.5235 
0.7171 
0.8129 
0.9062 
0.9780 
0.9940 
0.9982 

~~ 

3.162 

0.1670 
0.1573 
0.1251 
0.07317 
0.01939 
0.005548 
0.001745 

10.0 

0.005765 
- 0.02243 
-0.03503 
-0.03387 
- 0.01305 
-0.004215 
- 0.001381 

table below shows how the maximum values of AG"(w) and AG"(w) for 
cach trial decrease as the number of trials increases. 

Trial M ~ X .  A G ' ( ~ )  Max. AG"(w) 

1 
2 
3 
5 
10 
15 
20 

0.1780 
0.04025 
0.01949 

-0.005496 
-0.0008481 
0.00021 70 
O.ooOo7619 

0.1410 
0.05558 

- 0.02843 
0.01106 
0.002087 
0.0005166 
0.0001404 

Duplicate calculations were made with A log w = 0.2. The grouping of 
spectral lines as well as the maximum AW(w) and AG"(0) are given below 
for the twentieth trial. 

7i Hi 

0.1 
0.1585 
0.2512 
0.3891 
0.6310 
1 .o 
1.585 
2.512 
3.981 
6.310 
10. 

-0.009988 
0.01083 
0.02645 

0.2173 
0.7373 
0.2161 

0.02705 
0.009117 
0.008164 

-0.1152 

-0.1143 

Max.  AG'(o) = 0.0004205 
Max. AG'(,) = 0.0005147 

This spectrum S considerably less sharply peaked than that summarized 
in Table I and, in fact, the envelope of the Hi's  suggests the analytic curves 
of Ninomiya and Fcrry.12 Further, the spectrum when A log z = 0.5 is 
almost perfectly symmetrical about z = 1, but is leas so when A log 7 = 
0.2. The reason appears to I w  in roundoff errors in the fourth significant 
figure. This suggests that the Lalance 1)etwcen prccision of data and 
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magnitude of A log T may be at somewhat larger values for the latter than 
the range 0.2-0.4 suggested by Ninomiya and Ferry.12 

Spectrum from G"(w,a), a unrestricted 

In this case, by following eq. (17) it is shown that a = 1/27, or 0.5, since 
7 = 1. Fromeq. (19): 

G"(U,U) = G ( O ) W T / ( ~ / ~  + d r 2 )  

= 2G(O)(2~7) / (1  + (2W)'T') (40) 
From Eq. (2), for the single line spectrum at r = 1, G"(o) = G(O)wr/ 
(1 + w ~ T ~ ) ;  comparing this with eq. (40), we see that G"(w,a) = 2GR(2w). 
The result is that the spectrum as calculated from G"(w,a) will have twice 
the strength at  half the frequency (corresponding to twice the relaxation 

LOG 0,-LOG 7 

Fig. 10. Single maxwell element. Calculation of spectrum from GD(w,a), a uncon- 
trolled: A =: true spectral lie; B = G'(w,a), a uncontrolled; C = G"(w,a), a uncon- 
trolled; m, n, p, q =  chief spectral lines at twentieth trial; D = Gl'(w,a) at twentieth 
trial; E = GL"(w,u) at twentieth trial. 
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time) as that calculated from G'(0). If the sole criterion of succe88 were 
the finding of a spectrum that would duplicate G'(w,u), then this would be 
fairly successful (Fig. 10). The principal lines in the spectrum after the 
twentieth trial were: 

Ti Hi (20th trial) H i  (true) 

1.000 1.179 1.000 
3.162 0.1617 0.0 
10.000 -2.140 0.0 
31.62 - 0.2530 0.0 - 

ZHi = -1.052 1.000 

Other spectral lines of small magnitude resulted in a sum for all Hi's of 
- 1.059. The four main lines and the resulting G'(w,u) are shown in Figure 
10. The gross failure to reproduce the pure-single-line spectrum at T = 1, 
and G'(o,a), is perhaps not as surprising as the success in reproducing Ga- 
(w,a),  since the inversion formula of Ninomiya and Ferry applies strictly 
oaly to G"(w), not to G"(w,u). This serves to demonstrate the power of 

/the iterated application of the Ninomiya and Ferry approximation in 
reproducing G"(o,u) even when very large u / w  ratios appear. However, 
since such calculations will never be practically necessary, no further 
examples of calculations with unrestricted u will be given. 

Spectrum f rom G'(w,a), u/w '< 0.1 

The results of this calculation are fully as satisfactory as those from 
G"(o). Table I1 shows the central tendency and the gradual improve- 
ment in the spectrum through the twentieth iteration. 

TABLE IJ 
H i  at and Adjacent to Central Line aa a Function of the Trial Number; Single Unit 

Mmxwell Element, T = 1 

Trid 

1 
2 
3 
5 
10 
15 
19 
20 

7 

0.1 

0.0003215 
-0.02468 
-0.03097 
- 0.02362 
-0.005950 
-0 .OO1145 
-0.0001436 
-0.00002939 

0.3162 

0.1637 
0.1325 
0.09378 
0.045'47 
0.007639 
O.OOlO75 
0 .  m7774 

-0.0002001 

1.0 

0.5929 
0.7795 
0.8659 
0.9432 
0.9914 
0.9987 
0.9909 
1 .000 

3.162 

0.1674 
0.1361 
0.09665 
0.04666 
0.007906 
0.001379 
0.0002894 
0.0001778 

10.0 

0.0008872 
-0.02719 
-0.03351 
-0.02468 
- 0.005773 
-0.001161 
-0.0003019 
-0.0002109 

Tbe total strength of the spectrum, ZH,, is 0.9246 at the first trial, 
increases to 0.9999 at the ninth, and remains at this value far the remainder 
of the twenty trials. It therefore appears likely both from this observa- 
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!.ion and from the way in which Ht  at rt = 1 converges to 1.0, that further 
iterations would not lead to any further significant change in the spectrum. 

The maximum values of AG’(w,u) and AG’(w,u) for these trials are given 
below. 

Trial Max. AG‘(o,a) Max. AGx(w,a) 

1 0.1317 0.1224 
2 0.03151 0.04563 
3 -0.01377 0.02259 
5 -0.003886 0.007905 
10 O.ooeu)4 0.001038 
15 0.0001441 0.0001769 
19 -0.0001300 0.00004650 
20 -0.~1310 -0.00003366 

2. ‘%ox’’SpeCtrum 

spectrum f T m  G”(u) 

Since the box spectrum covers six decades, with a total strength of unity, 
each decade must account for and, since each decade is divided into two 
equal parts on 8 logarithmic basis, each of the eleven spectral €in= within 
the spectrum should have a strength of = 0.08333. h t l y  what 
should be expected at the two boundaries is perhaps not clear, but the two 
should have a mean value of 0.08333/2 = 0.04167. In the table below are 
listed the two boundary values and both the highest and lowest interior 
values found at various trials. 

Interior Valua of Hi 

Hi at Hi st 
Trial no. 7 = 1.0 Highest Lowest 7 = l(r 

1 
2 
3 
4 
9 
14 
20 

Expected 

0.03619 
0.04093 
0.04155 
0.04164 
0.04167 
0.04167 
0.04167 

value 0.04167 

0.07250 
0.08276 
0.08519 
0.08640 
0.08867 
0.08888 
0.08892 
0.08333 

0.06761 
0.08125 
0.08281 
0.08292 
0.08204 
0.08177 
0.08171 
0.08333 

0.03619 
0.04092 
0.04154 
0.04162 
0.04163 
0.04164 
0.04164 
0.04167 

The maximum values of AG’(w) and AG”(w) for the above trials were: 

Trial no. Max. AG’(w) Max. AG’(o) 

1 
2 
3 
4 
9 
14 
20 

0.1358 
0.02112 
0.003004 
0.002337 
0.001577 
0.001524 
0.001510 

0.01578 
0.003435 
0.001090 
O.OOO4720 
0.00004239 

-0.oooO1118 
-0.oooo1639 
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Fig. 11. “Box” distribution. Calculation of spectrum from G’(o). The X’s are 
the smoothed points at the spectral boundaries at the ninth trial (see text). 

From the point of view of AG‘(u), trial 14 is the best. The evolution of 
this spectrum brings out quite clearly one of the main problems in such 
iterative processes, namely, where to stop. Since the spectrum is being 
calculated from G”(u), it might be thought that the best spectrum would 
be that associated with the least deviation of the recalculated G ” ( w )  
from the original, that is, with the lowest value of AG“(0) in the above 
table. This occurs at  the fourteenth trial. Figure 11 shows spectra to 
correspond with the table. Knowing in advance that the spectrum is the 
“box,” one would be inclined to use a trial earlier than the fourteenth. 
But in ignorance of the true spectrum, which trial should one use? Though 
there is no simple answer, a few observations may be pertinent. First, 
with data to a certain number of significant figures there may be errors of 
0.5 in the last digits. The calculated spectrum will reflect these errors, 
and upon iteration will try, not to smooth them, but to accommodate 
them. This must result in “noise” in the spectrum. There would seem, 
then, to be no advantage in iteration beyond the point where the error in 
the reproduced experimental function has been reduced to 0.5 in the last 
digit. Second, at 
this trial, and in fact in all trials after the second, there are positive peaks 
at the ends of the spectrum, compensated for by negative peaks just out- 
side the spectrum. These pairs of positive and negative peaks denote the 

For the “box” spectrum, this occurs at the ninth trial. 
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discontinuities at  the ends of the spectrum, and it may be permissible to 
smooth, by adding enough to the negative peak to eliminate it and sub- 
tracting the same amount from the adjacent positive peak. Such a spec- 
trum is shown in Figure 11, and it is submitted that it represents the 
desired discrete spectrum rather successfully. 

The above considerations about roundoff errors are applicable in this 
case of a fairly short spectrum. Different conditions apply in the case of 
extended spectra, particularly those in which important relaxation phe- 
nomena of quite different orders of magnitude occur at  widely separated 
relaxation times. This will be discussed further in the section on poly- 
isobutylene. 

Spectrum from G"(w,a), a / w  '< 0.1 
In the.table below are, as before, the boundary values and the highest 

and lowest interior values for H ,  at various trials. 

Interior Values of Hi 

Hi at Hi  at 
Trial no. T = 1.0 Highest Lowest = 104 

1 
2 
3 
5 

10 
15 
20 

Expected value 

0.03620 
0.04045 
0.04111 
0.04138 
0.04157 
0.04162 
0.04164 
0.04167 

0.07728 
0.08395 
0.08601 
0.08710 
0.08887 
0.08894 
0.08894 
0.08333 

0.07029 
0.08214 
0.08231 
0.08231 
0.08161 
0.08149 
0.08147 
0.08333 

0.03881 
0.04174 
0.04200 
0.04210 
0.04218 
0.04220 
0.04220 
0.04167 

The maximum values of AG'(w,a) and AG"(w,a) for the above trials were: 

Trial no. Max. AG'(w,a) Max. AG"(w,a) 

1 
2 
3 
5 

10 
15 
20 

0.08820 
0.01130 
0.003801 
0.002543 
0.002321 
0.002293 
0.002288 

0.0133 
0.001971 
0.0008724 

0 . m 2 8 8 1  
- 0. oooO2551 
- 0. oooO2677 

- 0.0002256 

The comments made above in relation to spectra from G"(w) are also 
pertinent here; the differences are only a matter of small degree. 

3. Polyisobutyiene 

Spectrum from G " ( w )  

The progressively improving reproduction of GX(w,a) is illustrated in 
The upper curve is that to be duplicated. The curves for the Figure 12. 
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Fig. 13. Polyiaobutylene. Original spectrum (upper curve), and errom in its calculation 
from Cf'(o,a) at trial n b b e m  aa indicated on the curves. 

first, fourth, and twentieth trials represent lAG'(w,~)l, or the absolute 
value of the difference between the functions G"(w,u) calculated from the 
spectra obtained in those trials and the "true" G*(w,u), in other words, 
the error in the reproduced G'(w,u). In the first trial, the error is about 1 
part in 10; in the fourth, 1 ih a 1OOO; and in the twentieth, it is between 1 
in lo4 and 1 in lo6. 

(The "true" and reproduced functions are generally identical with the 
fourth sigPificant figure in the twentieth trial. The computing machine, 
however, works to seven or eight signiscant figures, and the errors are com- 
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Fig. 14. Polykobutylene. G'(o,a) calculated from the original spectrum; the errom 
in its reproduction, from the approximate spectra. Upper curve: G'(w,a). The other 
curvtw show the errom in the reproduction of G'(0,a) at trial numbers aa indicated on the 
CUWBB. 

puted by the machine before the superfluous figures are curtailed for print- 
out. The four significant figures that are printed are not obtained by 
rounding, but by merely suppressing all digits beyond the fourth.) 

Figure 13 shows similarly the progressive improvement in the spectrum. 
Within the limitsl of the initial spectrum, the first trial is in error by about 
1 part in 10; the fourth, by about 1 part in lo2; and the twentieth, by 
roughly 1 part in 1 0 8 .  Outside these limits, the initial spectrum is assumed 
to vanish. The sum of all the H:s found outside the initial spectrum is 
8.76 X lo7 at the Grst trial, and 6.34 X lo4 at the 20th. Figure 14 is a 
similar plot for G'(w,a). The errors here are of about the same magnitude 
&s those of Figure 13. 

Spectrum from G"(w,a), a/w Q 0.1 

The results in this case are 80 nearly the same as those from G*(o) that 
except for the details of the noise the same plots can serve for both. 

DISCUSSION 
If a/o = 0.1, the maximum ratios of the integrands of eqs. (32) and (1) 

and of eqs. (31) and (2) are, respectively, 1.116 and 1.105, occurring at 
7 = 0.9512/w. These ratios are the extremes, and will be found only in 
the case of single Maxwell units. In the case of polyisobutylene, for ex- 
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ample, the maximum ratios G'(w,a)/G'(w) and G"(w,a)/G"(.;) are 1.093 
and 1.073, respectively. These discrepancies are not very great when we 
consider uncertainties in measurement and in the derivation of other 
functions from G' and G" by the usual approximations, but they are, on 
the other hand, hardly so small as to be dismissed. There seems to be no 
practicable way to calculate functions of ( w )  directly from those of (@,a), 
but we have shown that the relaxation spectrum can be found by iteration 
to a high degree of accuracy from either G"(o) or G"(o,a), and any other 
desired function then can be calculated from it. 

Free vibration tests in which a spring (9' in our nomenclature) or thread 
supports the specimen are not new,14-16 although in these cases the value 
of g' was regarded as negligible. Ferry4 has suggested larger values of g' 
for the purpose of reducing damping. In this paper it is shown how ap- 
propriate values of g' may be derived for materials whose relaxation spectra 
are known. In the calculations, we have shown that when a is non- 
random-that is, is either made equal to 0 . 1 ~  or is found as a function 
satisfying eqs. (33) and (34)-the relaxation spectrum may be found. 
Experimentally, a / w  would vary more or less erratically as different values 
of I or sample dimensions were used to keep the frequency within bounds 
at different temperatures. One such case was calculated, for the single 
Maxwell element, with a variable but always < 0 . 1 ~ .  Tbe convergence to 
the true specimen was fully as satisfactory as in the case of a = 0 or a < 
0 . 1 ~ .  It therefore seems that for materials in which UT may be assumed 
known-for instance, those whose aT may be predicted through the WLF 
relation"-an apparatus, providing variable I and g' and means of vary- 
ing the specimen size and shape over rather wide limits, can be made to 
operate at  a reasonably small range of frequencies, and with suitable 
damping. Then with uT assumed known, temperature changes can be 
translated into terms of frequency, and the resulting G"(w,a) can be used 
to determine the relaxation spectrum. The absurd spectrum obtained with 
a single Maxwell unit with a unrestricted might instill a fear that faults 
might occur in less obvious ways. In a normal case, the first trial gives a 
good first approximation of the ultimate spectrum, and the subsequent 
trials merely r e h e  it progressively; in the absurd case, the first trial spec- 
trum bore no resemblance to that of the twentieth trial. Thus detection 
of abnormality appears easy. 
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Synopsis 
The complex elastic modulus G * ( w )  = G' (w)  + iG"(w) k shown to be a function not 

only of the frequency ( w )  but also of the damping factor a if the strain is of the form 
z = The general equations for G*(w,u) = G'(o,a) + iG"(w,a) = 
are derived in terms of the relaxation spectrum. The use of a spring to aid the specimen 
and reduce the ratio a / w  k discwed, and its desirability demonstrated. If data are 
thus available in terms of either G " ( w )  or G"(w,a) the iterated second approximation of 
Ninomiya and Ferry provides a rapid and powerful method of finding the relaxation 
spectrum. To the accuracy to which the time-temperature reduction factor aT is 
known or can be predicted by means such, for example, as the WLF equation, the 
function Gv(w,a) over a temperature range at  nearly constant frequency can be trans- 
lated into terms of G'(w,a) a t  constant temperature and varying frequency. In such 
cases, the relatively simple torsional pendulum, or some analogue of it, can economically 
provide a characterization of the viscoelastic behavior of the material over an extended 
time or frequency range. 

exp( -at)  sin wt. 

Rbum6 
On montre que le module d'6lasticit6 complexe G*(o)  = G ' ( w )  + iG'(w) est une 

fonction non seulement de la frhquence (0) mais aussic du facteur d'amortissement a si la 
deformation est de la forme z = zo exp { -at} sin wt. Les bquations gbnhrales de G*(wp) = 
G'(w,a) + iG"(w,a) sont d6riv6es en termes de spectre dA relaxation. L'emploi d'un 
ressort pour aider le modhle et  r6duire le rapport a / w  eat discuth et on d6montre son 
utilith. Si donc les donn6es sont utilisables en termes soit G"(w)  soit G"(w,a) la seconde 
approximation r6p6tRe de Ninomiya et Ferry fournit une m6thode rapide et  puiasante 
pour trouver le spectre de r6laxation. En ce qui concerne la pr&ision avec laquelle on 
connait, ou on peut pr6dire au moyen par exemple de 1'6quation WLF, le facteur de 
r6duction temps-temp6rature aT, on peut traduire la fonction G"(w,a) dans un domaine 
de temp6rature a une fr6quence ti peu prhs constante, en termes de G"(w,a) a temp6rature 
constante et  fr6quence variable. Dans pareils cas, le pendule de tomion relativement 
simple, ou tout analogue ti lui, peut fournir il peu de frak, une caract6rkation du com- 
portement visco6lastique du mathriau pendant un long laps de temps ou gamme de 
fr6quence. 

Zusammenfassung 
Es wird gezeigt, dass der komplexe Elastizitatamodul G * ( w )  = G ' ( w )  + iG"(w) nicht 

nur eine Funktion der Frequenz (a) sondern such des Dampfungsfaktors a fur eine 
Verformung von der Form x = zo exp { -at}  sin wt ist. Die allgemeinen Besiehungen 
fur G*(o,a) = G'(w,a) + iG"(o,a) werden anhand des Relaxationsspektrums abgeleitet. 
Die Benuteung einer Feder zur Unterstutzung der Probe und zur Verkleinerung des 
Verhaltnisse:3 a / w  wird diskutiert und als wunschenswert betrachtet. Wenn auf diese 
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Weise Daten fur G'(o) oder G'(w,u) zuglinglich sind, liefert daa Zweite-Iteratione- 
Naherungsverfahren von Ninomiya und Ferry eine raeche und wirksame Methode 
zur Aufhdung des Relaxationsspektrums. Mit der gleichen Genauigkeit, mit welcher 
der Zeit-Temperaturreduktionsfaktor uT bekannt ist oder anhand von Beziehungen, 
Wie etwa der WLF-Glcichung, erhalten werden kann, kann die Funktion G'(w,u) in 
einem Temperaturbereich mit nahezu konstanter Frequenz in G'( o,u) bei konstanter 
Temperatur und variierender Frequenz iibergefiihrt werden. In  solchen Fiillen kanr 
daa relativ einfache Torsionspendel, oder eine analoge Vorrichtung, in okonomischer 
Weke eine Charakterkierung des vkkoelaatischen Verhaltens des Materials in einem 
ausgedehnten Zeit- oder Frequensbereich liefern. 
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